Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24.716
Filtrar
1.
Oncol Res ; 32(4): 625-641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560562

RESUMO

The cancer cell metastasis is a major death reason for patients with non-small cell lung cancer (NSCLC). Although researchers have disclosed that interleukin 17 (IL-17) can increase matrix metalloproteinases (MMPs) induction causing NSCLC cell metastasis, the underlying mechanism remains unclear. In the study, we found that IL-17 receptor A (IL-17RA), p300, p-STAT3, Ack-STAT3, and MMP19 were up-regulated both in NSCLC tissues and NSCLC cells stimulated with IL-17. p300, STAT3 and MMP19 overexpression or knockdown could raise or reduce IL-17-induced p-STAT3, Ack-STAT3 and MMP19 level as well as the cell migration and invasion. Mechanism investigation revealed that STAT3 and p300 bound to the same region (-544 to -389 nt) of MMP19 promoter, and p300 could acetylate STAT3-K631 elevating STAT3 transcriptional activity, p-STAT3 or MMP19 expression and the cell mobility exposed to IL-17. Meanwhile, p300-mediated STAT3-K631 acetylation and its Y705-phosphorylation could interact, synergistically facilitating MMP19 gene transcription and enhancing cell migration and invasion. Besides, the animal experiments exhibited that the nude mice inoculated with NSCLC cells by silencing p300, STAT3 or MMP19 gene plus IL-17 treatment, the nodule number, and MMP19, Ack-STAT3, or p-STAT3 production in the lung metastatic nodules were all alleviated. Collectively, these outcomes uncover that IL-17-triggered NSCLC metastasis involves up-regulating MMP19 expression via the interaction of STAT3-K631 acetylation by p300 and its Y705-phosphorylation, which provides a new mechanistic insight and potential strategy for NSCLC metastasis and therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Camundongos , Animais , Humanos , Carcinoma Pulmonar de Células não Pequenas/patologia , Interleucina-17/genética , Interleucina-17/metabolismo , Fosforilação , Neoplasias Pulmonares/patologia , Acetilação , Camundongos Nus , Transcrição Gênica , Movimento Celular/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
2.
J Clin Invest ; 134(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557491

RESUMO

Mutations in genes encoding chromatin modifiers are enriched among mutations causing intellectual disability. The continuing development of the brain postnatally, coupled with the inherent reversibility of chromatin modifications, may afford an opportunity for therapeutic intervention following a genetic diagnosis. Development of treatments requires an understanding of protein function and models of the disease. Here, we provide a mouse model of Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS) (OMIM 603736) and demonstrate proof-of-principle efficacy of postnatal treatment. SBBYSS results from heterozygous mutations in the KAT6B (MYST4/MORF/QFK) gene and is characterized by intellectual disability and autism-like behaviors. Using human cells carrying SBBYSS-specific KAT6B mutations and Kat6b heterozygous mice (Kat6b+/-), we showed that KAT6B deficiency caused a reduction in histone H3 lysine 9 acetylation. Kat6b+/- mice displayed learning, memory, and social deficits, mirroring SBBYSS individuals. Treatment with a histone deacetylase inhibitor, valproic acid, or an acetyl donor, acetyl-carnitine (ALCAR), elevated histone acetylation levels in the human cells with SBBYSS mutations and in brain and blood cells of Kat6b+/- mice and partially reversed gene expression changes in Kat6b+/- cortical neurons. Both compounds improved sociability in Kat6b+/- mice, and ALCAR treatment restored learning and memory. These data suggest that a subset of SBBYSS individuals may benefit from postnatal therapeutic interventions.


Assuntos
Anormalidades Múltiplas , Acetilcarnitina , Hipotireoidismo Congênito , Anormalidades Craniofaciais , Histona Acetiltransferases , Deficiência Intelectual , Instabilidade Articular , Animais , Humanos , Camundongos , Anormalidades Múltiplas/tratamento farmacológico , Anormalidades Múltiplas/genética , Acetilação , Acetilcarnitina/farmacologia , Acetilcarnitina/uso terapêutico , Blefarofimose , Cromatina , Anormalidades Craniofaciais/tratamento farmacológico , Anormalidades Craniofaciais/genética , Éxons , Facies , Cardiopatias Congênitas , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/genética , Deficiência Intelectual/tratamento farmacológico , Deficiência Intelectual/genética
3.
Mol Cell ; 84(8): 1601-1610.e2, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38640895

RESUMO

Cytidine acetylation (ac4C) of RNA is a post-transcriptional modification catalyzed by Nat10. Recently, an approach termed RedaC:T was employed to map ac4C in human mRNA, relying on detection of C>T mutations in WT but not in Nat10-KO cells. RedaC:T suggested widespread ac4C presence. Here, we reanalyze RedaC:T data. We find that mismatch signatures are not reproducible, as C>T mismatches are nearly exclusively present in only one of two biological replicates. Furthermore, all mismatch types-not only C>T-are highly enriched in WT samples, inconsistent with an acetylation signature. We demonstrate that the originally observed enrichment in mutations in one of the WT samples is due to its low complexity, resulting in the technical amplification of all classes of mismatch counts. Removal of duplicate reads abolishes the skewed mismatch patterns. These analyses account for the irreproducible mismatch patterns across samples while failing to find evidence for acetylation of RedaC:T sites.


Assuntos
Citidina , RNA , Humanos , RNA Mensageiro/genética , Acetilação , Mutação
4.
Biochem Biophys Res Commun ; 710: 149872, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38593621

RESUMO

Protein modifications importantly contribute to memory formation. Protein acetylation is a post-translational modification of proteins that regulates memory formation. Acetylation level is determined by the relative activities of acetylases and deacetylases. Crebinostat is a histone deacetylase inhibitor. Here we show that in an object recognition task, crebinostat facilitates memory formation by a weak training. Further, this compound enhances acetylation of α-tubulin, and reduces the level of histone deacetylase 6, an α-tubulin deacetylase. The results suggest that enhanced acetylation of α-tubulin by crebinostat contributes to its facilitatory effect on memory formation.


Assuntos
Histona Desacetilases , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Histona Desacetilases/metabolismo , Desacetilase 6 de Histona/metabolismo , Compostos de Bifenilo , Hidrazinas , Inibidores de Histona Desacetilases/farmacologia , Acetilação
5.
J Mol Neurosci ; 74(2): 34, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38565829

RESUMO

Protein acetylation, which is dynamically maintained by histone acetyltransferases (HATs) and deacetylases (HDACs), might play essential roles in hippocampal exercise physiology. However, whether HATs/HDACs are imbalanced during the recovery phase following acute exercise has not been determined. Groups of exercised mice with different recovery periods after acute exercise (0 h, 0.5 h, 1 h, 4 h, 7 h, and 24 h) were constructed, and a group of sham-exercised mice was used as the control. The mRNA levels of HATs and HDACs were detected via real-time quantitative polymerase chain reaction. Lysine acetylation on the total proteins and some specific locations on histones were detected via western blotting, as were various acylation modifications on the total proteins. Except for four unaffected genes (Hdac4, Ncoa1, Ncoa2, and Sirt1), the mRNA expression trajectories of 21 other HATs or HDACs affected by exercise could be categorized into three clusters. The genes in Cluster 1 increased quickly following exercise, with a peak at 0.5 h and/or 1 h, and remained at high levels until 24 h. Cluster 2 genes presented a gradual increase with a delayed peak at 4 h or 7 h postexercise before returning to baseline. The expression of Cluster 3 genes decreased at 0.5 h and/or 1 h, with some returning to overexpression (Hdac1 and Sirt3). Although most HATs were upregulated and half of the affected HDACs were downregulated at 0.5 h postexercise, the global or residue-specific histone acetylation levels were unchanged. In contrast, the levels of several metabolism-related acylation products of total proteins, including acetylation, succinylation, 2-hydroxyisobutyryllysine, ß-hydroxybutyryllysine, and lactylation, decreased and mainly occurred on nonhistones immediately after exercise. During the 24-h recovery phase after acute exercise, the transcriptional trajectory of HATs or the same class of HDACs in the hippocampus exhibited heterogeneity. Although acute exercise did not affect the selected sites on histone lysine residues, it possibly incurred changes in acetylation and other acylation on nonhistone proteins.


Assuntos
Histona Acetiltransferases , Histonas , Animais , Camundongos , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Lisina/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Acetilação , Hipocampo/metabolismo
6.
Life Sci Alliance ; 7(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575358

RESUMO

For establishing sister chromatid cohesion and proper chromosome segregation in mitosis in fission yeast, the acetyltransferase Eso1 plays a key role. Eso1 acetylates cohesin complexes, at two conserved lysine residues K105 and K106 of the cohesin subunit Psm3. Although Eso1 also contributes to reductional chromosome segregation in meiosis, the underlying molecular mechanisms have remained elusive. Here, we purified meiosis-specific Rec8 cohesin complexes localized at centromeres and identified a new acetylation at Psm3-K1013, which largely depends on the meiotic kinetochore factor meikin (Moa1). Our molecular genetic analyses indicate that Psm3-K1013 acetylation cooperates with canonical acetylation at Psm3-K105 and K106, and plays a crucial role in establishing reductional chromosome segregation in meiosis.


Assuntos
Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , 60634 , Segregação de Cromossomos/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Acetilação , Meiose/genética , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo
7.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612690

RESUMO

Epigenetic changes are changes in gene expression that do not involve alterations to the DNA sequence. These changes lead to establishing a so-called epigenetic code that dictates which and when genes are activated, thus orchestrating gene regulation and playing a central role in development, health, and disease. The brain, being mostly formed by cells that do not undergo a renewal process throughout life, is highly prone to the risk of alterations leading to neuronal death and neurodegenerative disorders, mainly at a late age. Here, we review the main epigenetic modifications that have been described in the brain, with particular attention on those related to the onset of developmental anomalies or neurodegenerative conditions and/or occurring in old age. DNA methylation and several types of histone modifications (acetylation, methylation, phosphorylation, ubiquitination, sumoylation, lactylation, and crotonylation) are major players in these processes. They are directly or indirectly involved in the onset of neurodegeneration in Alzheimer's or Parkinson's disease. Therefore, this review briefly describes the roles of these epigenetic changes in the mechanisms of brain development, maturation, and aging and some of the most important factors dynamically regulating or contributing to these changes, such as oxidative stress, inflammation, and mitochondrial dysfunction.


Assuntos
Encéfalo , Epigênese Genética , Metilação de DNA , Processamento de Proteína Pós-Traducional , Acetilação
8.
Int J Mol Sci ; 25(7)2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38612707

RESUMO

Cancers harness embryonic programs to evade aging and promote survival. Normally, sequences at chromosome ends called telomeres shorten with cell division, serving as a countdown clock to limit cell replication. Therefore, a crucial aspect of cancerous transformation is avoiding replicative aging by activation of telomere repair programs. Mouse embryonic stem cells (mESCs) activate a transient expression of the gene Zscan4, which correlates with chromatin de-condensation and telomere extension. Head and neck squamous cell carcinoma (HNSCC) cancers reactivate ZSCAN4, which in turn regulates the phenotype of cancer stem cells (CSCs). Our study reveals a new role for human ZSCAN4 in facilitating functional histone H3 acetylation at telomere chromatin. Next-generation sequencing indicates ZSCAN4 enrichment at telomere chromatin. These changes correlate with ZSCAN4-induced histone H3 acetylation and telomere elongation, while CRISPR/Cas9 knockout of ZSCAN4 leads to reduced H3 acetylation and telomere shortening. Our study elucidates the intricate involvement of ZSCAN4 and its significant contribution to telomere chromatin remodeling. These findings suggest that ZSCAN4 induction serves as a novel link between 'stemness' and telomere maintenance. Targeting ZSCAN4 may offer new therapeutic approaches to effectively limit or enhance the replicative lifespan of stem cells and cancer cells.


Assuntos
Histonas , Telômero , Animais , Camundongos , Humanos , Acetilação , Telômero/genética , Cromatina/genética , Envelhecimento
9.
J Cell Mol Med ; 28(8): e18307, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38613342

RESUMO

Mucopolysaccharidosis type IIIC (MPS IIIC) is one of inherited lysosomal storage disorders, caused by deficiencies in lysosomal hydrolases degrading acidic mucopolysaccharides. The gene responsible for MPS IIIC is HGSNAT, which encodes an enzyme that catalyses the acetylation of the terminal glucosamine residues of heparan sulfate. So far, few studies have focused on the genetic landscape of MPS IIIC in China, where IIIA and IIIB were the major subtypes. In this study, we utilized whole-exome sequencing (WES) to identify novel compound heterozygous variants in the HGSNAT gene from a Chinese patient with typical MPS IIIC symptoms: c.743G>A; p.Gly248Glu and c.1030C>T; p.Arg344Cys. We performed in silico analysis and experimental validation, which confirmed the deleterious pathogenic nature of both variants, as evidenced by the loss of HGSNAT activity and failure of lysosomal localization. To the best of our knowledge, the MPS IIIC is first confirmed by clinical, biochemical and molecular genetic findings in China. Our study thus expands the spectrum of MPS IIIC pathogenic variants, which is of importance to dissect the pathogenesis and to carry out clinical diagnosis of MPS IIIC. Moreover, this study helps to depict the natural history of Chinese MPS IIIC populations.


Assuntos
Mucopolissacaridoses , Mucopolissacaridose III , Humanos , Mucopolissacaridose III/genética , Mucopolissacaridoses/genética , Povo Asiático/genética , Acetilação , China , Acetiltransferases
10.
Proc Natl Acad Sci U S A ; 121(16): e2318935121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588421

RESUMO

Glucose is required for generating heat during cold-induced nonshivering thermogenesis in adipose tissue, but the regulatory mechanism is largely unknown. CREBZF has emerged as a critical mechanism for metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD). We investigated the roles of CREBZF in the control of thermogenesis and energy metabolism. Glucose induces CREBZF in human white adipose tissue (WAT) and inguinal WAT (iWAT) in mice. Lys208 acetylation modulated by transacetylase CREB-binding protein/p300 and deacetylase HDAC3 is required for glucose-induced reduction of proteasomal degradation and augmentation of protein stability of CREBZF. Glucose induces rectal temperature and thermogenesis in white adipose of control mice, which is further potentiated in adipose-specific CREBZF knockout (CREBZF FKO) mice. During cold exposure, CREBZF FKO mice display enhanced thermogenic gene expression, browning of iWAT, and adaptive thermogenesis. CREBZF associates with PGC-1α to repress thermogenic gene expression. Expression levels of CREBZF are negatively correlated with UCP1 in human adipose tissues and increased in WAT of obese ob/ob mice, which may underscore the potential role of CREBZF in the development of compromised thermogenic capability under hyperglycemic conditions. Our results reveal an important mechanism of glucose sensing and thermogenic inactivation through reversible acetylation.


Assuntos
Tecido Adiposo Marrom , Glucose , Camundongos , Humanos , Animais , Glucose/metabolismo , Tecido Adiposo Marrom/metabolismo , Acetilação , Tecido Adiposo Branco/metabolismo , Metabolismo Energético , Obesidade/genética , Obesidade/metabolismo , Termogênese/genética , Camundongos Endogâmicos C57BL , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
11.
Theranostics ; 14(6): 2345-2366, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646645

RESUMO

Rationale: Primordial follicles are limited in number and cannot be regenerated, dormant primordial follicles cannot be reversed once they enter a growth state. Therefore, the length of the female reproductive lifespan depends on the orderly progression and selective activation of primordial follicles, the mechanism of which remains unclear. Methods: We used human ovarian cortical biopsy specimens, granulosa cells from diminished ovarian reserve (DOR) patients, Hdac6-overexpressing transgenic mouse model, and RNA sequencing to analyze the crucial roles of histone deacetylase 6 (HDAC6) in fertility preservation and primordial follicle activation. Results: In the present study, we found that HDAC6 was highly expressed in most dormant primordial follicles. The HDAC6 expression was reduced accompanying reproductive senescence in human and mouse ovaries. Overexpression of Hdac6 delayed the rate of primordial follicle activation, thereby prolonging the mouse reproductive lifespan. Short-term inhibition of HDAC6 promoted primordial follicle activation and follicular development in humans and mice. Mechanism studies revealed that HDAC6 directly interacted with NGF, reducing acetylation modification of NGF and thereby accelerating its ubiquitination degradation. Consequently, the reduced NGF protein level maintained the dormancy of primordial follicles. Conclusions: The physiological significance of the high expression of HDAC6 in most primordial follicles is to reduce NGF expression and prevent primordial follicle activation to maintain female fertility. Reduced HDAC6 expression increases NGF expression in primordial follicles, activating their development and contributing to reproduction. Our study provides a clinical reference value for fertility preservation.


Assuntos
Desacetilase 6 de Histona , Camundongos Transgênicos , Fator de Crescimento Neural , Folículo Ovariano , Ubiquitinação , Desacetilase 6 de Histona/metabolismo , Desacetilase 6 de Histona/genética , Animais , Feminino , Folículo Ovariano/metabolismo , Humanos , Camundongos , Acetilação , Fator de Crescimento Neural/metabolismo , Células da Granulosa/metabolismo
12.
Cell Mol Life Sci ; 81(1): 193, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38652325

RESUMO

The acetylation of α-tubulin on lysine 40 is a well-studied post-translational modification which has been associated with the presence of long-lived stable microtubules that are more resistant to mechanical breakdown. The discovery of α-tubulin acetyltransferase 1 (ATAT1), the enzyme responsible for lysine 40 acetylation on α-tubulin in a wide range of species, including protists, nematodes, and mammals, dates to about a decade ago. However, the role of ATAT1 in different cellular activities and molecular pathways has been only recently disclosed. This review comprehensively summarizes the most recent knowledge on ATAT1 structure and substrate binding and analyses the involvement of ATAT1 in a variety of cellular processes such as cell motility, mitosis, cytoskeletal organization, and intracellular trafficking. Finally, the review highlights ATAT1 emerging roles in human diseases and discusses ATAT1 potential enzymatic and non-enzymatic roles and the current efforts in developing ATAT1 inhibitors.


Assuntos
Acetiltransferases , Proteínas dos Microtúbulos , Tubulina (Proteína) , Humanos , Acetiltransferases/metabolismo , Acetiltransferases/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química , Animais , Processamento de Proteína Pós-Traducional , Acetilação , Microtúbulos/metabolismo , Mitose , Movimento Celular , Neoplasias/patologia , Neoplasias/enzimologia , Neoplasias/metabolismo , Citoesqueleto/metabolismo
13.
Cell Death Dis ; 15(4): 289, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653973

RESUMO

GATA-binding protein 4 (GATA4) is recognized for its significant roles in embryogenesis and various cancers. Through bioinformatics and clinical data, it appears that GATA4 plays a role in breast cancer development. Yet, the specific roles and mechanisms of GATA4 in breast cancer progression remain elusive. In this study, we identify GATA4 as a tumor suppressor in the invasion and migration of breast cancer. Functionally, GATA4 significantly reduces the transcription of MMP9. On a mechanistic level, GATA4 diminishes MMP9 transcription by interacting with p65 at the NF-κB binding site on the MMP9 promoter. Additionally, GATA4 promotes the recruitment of HDAC1, amplifying the bond between p65 and HDAC1. This leads to decreased acetylation of p65, thus inhibiting p65's transcriptional activity on the MMP9 promoter. Moreover, GATA4 hampers the metastasis of breast cancer in vivo mouse model. In summary, our research unveils a novel mechanism wherein GATA4 curtails breast cancer cell metastasis by downregulating MMP9 expression, suggesting a potential therapeutic avenue for breast cancer metastasis.


Assuntos
Neoplasias da Mama , Movimento Celular , Fator de Transcrição GATA4 , Regulação Neoplásica da Expressão Gênica , Histona Desacetilase 1 , Metaloproteinase 9 da Matriz , Invasividade Neoplásica , Humanos , Fator de Transcrição GATA4/metabolismo , Fator de Transcrição GATA4/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genética , Feminino , Movimento Celular/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/genética , Animais , Acetilação , Linhagem Celular Tumoral , Camundongos , Fator de Transcrição RelA/metabolismo , Transcrição Gênica , Regiões Promotoras Genéticas/genética , Camundongos Nus , Camundongos Endogâmicos BALB C
14.
Nanoscale ; 16(16): 7976-7987, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38567463

RESUMO

Collective functionalization of the phytochemicals of medicinal herbs on nanoparticles is emerging as a potential cancer therapeutic strategy. This study presents the facile synthesis of surface-functionalized gold nanoparticles using Bacopa monnieri (Brahmi; Bm) phytochemicals and their therapeutically relevant mechanism of action in the colorectal cancer cell line, HT29. The nanoparticles were characterized using UV-visible spectroscopy, TEM-EDAX, zeta potential analysis, TGA, FTIR and 1H NMR spectroscopy, and HR-LC-MS. The particles (Bm-GNPs) were of polygonal shape and were stable against aggregation. They entered the target cells and inhibited the viability and clonogenicity of the cells with eight times more antiproliferative efficacy (25 ± 1.5 µg mL-1) than Bm extract (Bm-EX). In vitro studies revealed that Bm-GNPs bind tubulin (a protein crucial in cell division and a target of anticancer drugs) and disrupt its helical structure without grossly altering its tertiary conformation. Like other antitubulin agents, Bm-GNPs induced G2/M arrest and ultimately killed the cells, as confirmed using flow cytometry analyses. ZVAD-FMK-mediated global pan-caspase inhibition and the apparent absence of cleaved caspase-3 in treated cells indicated that the death did not involve the classic apoptosis pathway. Cellular ultrastructure analyses, western immunoblots, and in situ immunofluorescence visualization of cellular microtubules revealed microtubule-acetylation-independent induction of autophagy as the facilitator of cell death. Together, the data indicate strong antiproliferative efficacy and a possible mechanism of action for these designer nanoparticles. Bm-GNPs, therefore, merit further investigations, including preclinical evaluations, for their therapeutic potential as inducers of non-apoptotic cell death.


Assuntos
Autofagia , Neoplasias Colorretais , Ouro , Nanopartículas Metálicas , Humanos , Ouro/química , Ouro/farmacologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/tratamento farmacológico , Nanopartículas Metálicas/química , Autofagia/efeitos dos fármacos , Acetilação , Microtúbulos/metabolismo , Microtúbulos/efeitos dos fármacos , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Adenocarcinoma/tratamento farmacológico , Células HT29 , Caspases/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/química , Tubulina (Proteína)/metabolismo , Tubulina (Proteína)/química
15.
Elife ; 122024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598282

RESUMO

Acetylation of α-tubulin at the lysine 40 residue (αK40) by αTAT1/MEC-17 acetyltransferase modulates microtubule properties and occurs in most eukaryotic cells. Previous literatures suggest that acetylated microtubules are more stable and damage resistant. αK40 acetylation is the only known microtubule luminal post-translational modification site. The luminal location suggests that the modification tunes the lateral interaction of protofilaments inside the microtubule. In this study, we examined the effect of tubulin acetylation on the doublet microtubule (DMT) in the cilia of Tetrahymena thermophila using a combination of cryo-electron microscopy, molecular dynamics, and mass spectrometry. We found that αK40 acetylation exerts a small-scale effect on the DMT structure and stability by influencing the lateral rotational angle. In addition, comparative mass spectrometry revealed a link between αK40 acetylation and phosphorylation in cilia.


Assuntos
Microtúbulos , Tubulina (Proteína) , Acetilação , Microscopia Crioeletrônica , Processamento de Proteína Pós-Traducional
16.
Curr Biol ; 34(6): 1295-1308.e5, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38452759

RESUMO

Lysine acetylation of non-histone proteins plays crucial roles in many cellular processes. In this study, we examine the role of lysine acetylation during sister chromatid separation in mitosis. We investigate the acetylation of securin at K21 by cell-cycle-dependent acetylome analysis and uncover its role in separase-triggered chromosome segregation during mitosis. Prior to the onset of anaphase, the acetylated securin via TIP60 prevents its degradation by the APC/CCDC20-mediated ubiquitin-proteasome system. This, in turn, restrains precocious activation of separase and premature separation of sister chromatids. Additionally, the acetylation-dependent stability of securin is also enhanced by its dephosphorylation. As anaphase approaches, HDAC1-mediated deacetylation of securin promotes its degradation, allowing released separase to cleave centromeric cohesin. Blocking securin deacetylation leads to longer anaphase duration and errors in chromosome segregation. Thus, this study illustrates the emerging role of securin acetylation dynamics in mitotic progression and genetic stability.


Assuntos
Cromátides , Lisina , Separase/metabolismo , Securina/genética , Securina/metabolismo , Cromátides/metabolismo , Acetilação , Lisina/genética , Lisina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Anáfase , Endopeptidases , Segregação de Cromossomos
17.
J Agric Food Chem ; 72(12): 6077-6088, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38501450

RESUMO

Genomic studies in animal breeding have provided a wide range of references; however, it is important to note that genes and mRNA alone do not fully capture the complexity of living organisms. Protein post-translational modification, which involves covalent modifications regulated by genetic and environmental factors, serves as a fundamental epigenetic mechanism that modulates protein structure, activity, and function. In this review, we comprehensively summarize various phosphorylation and acylation modifications on metabolic enzymes relevant to energy metabolism in animals, including acetylation, succinylation, crotonylation, ß-hydroxybutylation, acetoacetylation, and lactylation. It is worth noting that research on animal energy metabolism and modification regulation lags behind the demands for growth and development in animal breeding compared to human studies. Therefore, this review provides a novel research perspective by exploring unreported types of modifications in livestock based on relevant findings from human or animal models.


Assuntos
Proteínas , Proteômica , Animais , Humanos , Proteínas/metabolismo , Acilação , Acetilação , Processamento de Proteína Pós-Traducional
18.
Methods Mol Biol ; 2791: 23-33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532089

RESUMO

Epigenetic programming plays a vital role in regulating pluripotency genes, which become activated or inactivated during the processes of dedifferentiation and differentiation during an organism's development. The analysis of epigenetic modifications has become possible through the technique of immunostaining, where specific antibodies allow the identification of a single target protein. This chapter describes a detailed protocol for the analysis of the epigenetic modifications with the use of confocal microscopy, subsequent image, and statistical analysis on the example of Fagopyrum calli with the use of nine antibodies raised against histone H3 and H4 methylation and acetylation on several lysines as well as DNA methylation.


Assuntos
Fagopyrum , Fagopyrum/metabolismo , Histonas/metabolismo , Núcleo Celular/metabolismo , Metilação de DNA , Anticorpos/metabolismo , Epigênese Genética , Acetilação
19.
Methods Mol Biol ; 2791: 15-22, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532088

RESUMO

Immunostaining is a well-established technique for identifying specific proteins in tissue samples with specific antibodies to identify a single target protein. It is commonly used in research and provides information about cellular localization and protein expression levels. This chapter describes a detailed protocol for immunostaining fixed Fagopyrum calli embedded in Steedman's wax using nine antibodies raised against histone H3 and H4 methylation and acetylation on several lysines and DNA methylation.


Assuntos
Fagopyrum , Fagopyrum/metabolismo , Histonas/metabolismo , Epigênese Genética , Metilação de DNA , Lisina/metabolismo , Anticorpos/metabolismo , Acetilação
20.
J Gene Med ; 26(3): e3678, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38500293

RESUMO

OBJECTIVES: The purpose of this research was to study the impact of histone acetylation on glioblastoma multiforme (GBM) and lower-grade gliomas (LGG) and its potential implications for patient prognosis. We aimed to assess the histone acetylation score (HAs) and its relationship with key genes involved in histone acetylation regulation. METHOD: The TCGA-GBMLGG dataset, which provides comprehensive genomic and clinical information, was utilized for this study. We calculated the HAs by analyzing the expression levels of histone acetylation-related genes, including histone acetyltransferases and histone deacetylases, in GBM and LGG patients. Kaplan-Meier survival analysis was performed to evaluate the prognostic value of the HAs. Furthermore, correlation analysis and differential expression analysis were conducted to assess the relationship between the HAs and key genes involved in histone acetylation regulation, as well as the expression differences of immune checkpoint genes. RESULTS: Our analysis revealed a significant association between the HAs and patient prognosis, with higher HAs correlating to poorer outcomes in GBM and LGG patients. We observed a positive correlation between the HAs and key genes involved in histone acetylation regulation, indicating their potential role in modulating histone acetylation levels. Moreover, we found significant expression differences for immune checkpoint genes between high and low HAs groups, suggesting a potential impact of histone acetylation on the immune response in GBM and LGG. CONCLUSION: This study highlights the significance of histone acetylation in GBM and LGG. The HAs demonstrated prognostic value, indicating its potential as a clinically relevant biomarker. The correlation between the HAs and key genes involved in histone acetylation regulation provides insights into the underlying mechanisms driving histone acetylation dysregulation in GBM and LGG. Furthermore, the observed expression differences of immune checkpoint genes suggest a potential link between histone acetylation and the immune response. These findings contribute to our understanding of the molecular basis of GBM and LGG and have implications for personalized treatment approaches targeting histone acetylation and the immune microenvironment. Further validation and functional studies are needed to confirm these findings and explore potential therapeutic strategies.


Assuntos
Glioblastoma , Glioma , Humanos , Glioblastoma/genética , Histonas/genética , Acetilação , Glioma/genética , Genômica , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...